1,173 research outputs found

    Correlations Estimates in the Lattice Anderson Model

    Full text link
    We give a new proof of correlation estimates for arbitrary moments of the resolvent of random Schr\"odinger operators on the lattice that generalizes and extends the correlation estimate of Minami for the second moment. We apply this moment bound to obtain a new nn-level Wegner-type estimate that measures eigenvalue correlations through an upper bound on the probability that a local Hamiltonian has at least nn eigenvalues in a given energy interval. Another consequence of the correlation estimates is that the results on the Poisson statistics of energy level spacing and the simplicity of the eigenvalues in the strong localization regime hold for a wide class of translation-invariant, selfadjoint, lattice operators with decaying off-diagonal terms and random potentials.Comment: 16 page

    Comparison of Simulator Wear Measured by Gravimetric vs Optical Surface Methods for Two Million Cycles

    Get PDF
    Understanding wear mechanisms are key for better implants Critical to the success of the simulation Small amount of metal wear can have catastrophic effects in the patient such as heavy metal poisoning or deterioration of the bone/implant interface leading to implant failure Difficult to measure in heavy hard-on-hard implants (metal-on-metal or ceramic-on-ceramic) May have only fractions of a milligram of wear on a 200 g component At the limit of detection of even high-end balances when the component is 200 g and the change in weight is on the order of 0.000 1 grams Here we compare the standard gravimetric wear estimate with A non-contact 3D optical profiling method at each weighing stop A coordinate measuring machine (CMM) at the beginning and end of the ru

    Quantum harmonic oscillator systems with disorder

    Full text link
    We study many-body properties of quantum harmonic oscillator lattices with disorder. A sufficient condition for dynamical localization, expressed as a zero-velocity Lieb-Robinson bound, is formulated in terms of the decay of the eigenfunction correlators for an effective one-particle Hamiltonian. We show how state-of-the-art techniques for proving Anderson localization can be used to prove that these properties hold in a number of standard models. We also derive bounds on the static and dynamic correlation functions at both zero and positive temperature in terms of one-particle eigenfunction correlators. In particular, we show that static correlations decay exponentially fast if the corresponding effective one-particle Hamiltonian exhibits localization at low energies, regardless of whether there is a gap in the spectrum above the ground state or not. Our results apply to finite as well as to infinite oscillator systems. The eigenfunction correlators that appear are more general than those previously studied in the literature. In particular, we must allow for functions of the Hamiltonian that have a singularity at the bottom of the spectrum. We prove exponential bounds for such correlators for some of the standard models
    • …
    corecore